#A15. 灵活控分

灵活控分

题目背景

时间回到 2014 年,T 小学正在举行期末考试。你是一名叫做肖芬途的学生,正在参加某门科目的期末考试。这门科目满分 100100 分。

题目描述

但是,由于考卷太难,老师宣布这门科目将采取「开根号乘十」的评分策略。具体的,如果试卷的分数是 xx 分,那么最终成绩单上的分数则为 10x\left \lfloor 10 \sqrt x \right \rfloor 分。

提示:对于非负数 xxx\sqrt x 代表 xx 的算术平方根。如果非负数 y×y=y2=xy \times y = y ^ 2 = x,那则称 y=xy = \sqrt x。例如,9=3\sqrt 9 = 3
提示:x\left \lfloor x \right \rfloor 代表小于等于 xx 的最大整数。例如,4.2=4\left \lfloor 4.2 \right \rfloor = 4

已知这门考试的试卷分数和成绩单分数一定都是整数。对于这门考试,肖芬途的班主任要求他的成绩单分数至少要达到 aa 分。由于肖芬途是天才,可以随意控制他的试卷分数,因此他想要挑战用最少的卷面分数让成绩单分数达到 aa 分。

现在他想要知道这个最少的卷面分数是多少。

形式化地讲,给定一个非负整数 aa,你需要找到最小的非负整数 xx,使得 10xa\left \lfloor 10 \sqrt x \right \rfloor \geq a

输入格式

输入共一行一个整数 aa,代表老师要求肖芬途的成绩单至少达到的分数。

输出格式

输出共一行一个整数,代表为了达到要求,肖芬途卷面分数的最小值。

60
36
43
19

提示

样例 1 解释

不难发现 103559.1610 \sqrt {35} \approx 59.161035=59\left \lfloor 10 \sqrt {35} \right \rfloor = 59,而 1036=6010 \sqrt {36} = 60,因此肖芬途至少需要考到 3636 分。

数据规模与约定

对于 100%100\% 的数据,0a1000 \leq a \leq 100